• 工作总结
  • 工作计划
  • 心得体会
  • 述职报告
  • 申请书
  • 演讲稿
  • 讲话稿
  • 领导发言
  • 读后感
  • 观后感
  • 事迹材料
  • 党建材料
  • 策划方案
  • 对照材料
  • 不忘初心
  • 主题教育
  • 脱贫攻坚
  • 调查报告
  • 疫情防控
  • 自查报告
  • 工作汇报
  • 党史学习
  • 当前位置: 达达文档网 > 文档下载 > 对照材料 > 正文

    §7-山东省教师教育网

    时间:2020-09-11 08:21:35 来源:达达文档网 本文已影响 达达文档网手机站

      高考复习科目:数学 高中数学总复习 I. 基础知识要点 一、概率.

     1. 概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.

     2. 等可能事件的概率:如果一次试验中可能出现的结果有年n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率.

     3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A、B互斥,那么事件A+B发生 即A、B中有一个发生 的概率,等于事件A、B分别发生的概率和,即P A+B P A +P B ,推广:.

     ②对立事件:两个事件必有一个发生的互斥事件叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生.

     注意:i.对立事件的概率和等于1:.

     ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.

     ③相互独立事件:事件A 或B 是否发生对事件B 或A 发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P A·B P A ·P B . 由此,当两个事件同时发生的概率P(AB)等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A:“抽到老K”;B:“抽到红牌”则 A应与B互为独立事件[看上去A与B有关系很有可能不是独立事件,但.又事件AB表示“既抽到老K对抽到红牌”即“抽到红桃老K或方块老K”有,因此有.

     推广:若事件相互独立,则.

     注意:i. 一般地,如果事件A与B相互独立,那么A 与与B,与也都相互独立.

     ii. 必然事件与任何事件都是相互独立的.

     iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件.

     ④独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的. 如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k次的概率:.

     4. 对任何两个事件都有

     二、随机变量.

     1. 随机试验的结构应该是不确定的.试验如果满足下述条件:

     ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.

     它就被称为一个随机试验.

     2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a,b是常数.则也是一个随机变量.一般地,若ξ是随机变量,是连续函数或单调函数,则也是随机变量.也就是说,随机变量的某些函数也是随机变量.

     设离散型随机变量ξ可能取的值为:

     ξ取每一个值的概率,则表称为随机变量ξ的概率分布,简称ξ的分布列. … … P … … 有性质①; ②.

     注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:即可以取0~5之间的一切数,包括整数、小数、无理数.

     3. ⑴二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是:[其中]

     于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作~B(n·p),其中n,p为参数,并记.

     ⑵二项分布的判断与应用.

     ①二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.

     ②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.

     4. 几何分布:“”表示在第k次独立重复试验时,事件第一次发生,如果把k次试验时事件A发生记为,事A不发生记为,那么.根据相互独立事件的概率乘法分式:于是得到随机变量ξ的概率分布列.

      1 2 3 … k … P q qp … … 我们称ξ服从几何分布,并记,其中

     5. ⑴超几何分布:一批产品共有N件,其中有M(M<N)件次品,今抽取件,则其中的次品数ξ是一离散型随机变量,分布列为.〔分子是从M件次品中取k件,从N-M件正品中取n-k件的取法数,如果规定<时,则k的范围可以写为k 0,1,…,n.〕

     ⑵超几何分布的另一种形式:一批产品由 a件次品、b件正品组成,今抽取n件(1≤n≤a+b),则次品数ξ的分布列为.

     ⑶超几何分布与二项分布的关系.

     设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数的分布列可如下求得:把个产品编号,则抽取n次共有个可能结果,等可能:含个结果,故,即~.[我们先为k个次品选定位置,共种选法;然后每个次品位置有a种选法,每个正品位置有b种选法] 可以证明:当产品总数很大而抽取个数不多时,,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.

     三、数学期望与方差.

     1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为 … … P … … 则称为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.

     2. ⑴随机变量的数学期望:

     ①当时,,即常数的数学期望就是这个常数本身.

     ②当时,,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.

     ③当时,,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.

     ξ 0 1 P q p ⑵单点分布:其分布列为:.

     ⑶两点分布:,其分布列为:(p + q 1)

     ⑷二项分布: 其分布列为~.(P为发生的概率)

     ⑸几何分布: 其分布列为~.的概率)

     3.方差、标准差的定义:当已知随机变量ξ的分布列为时,则称为ξ的方差. 显然为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.越小,稳定性越高,波动越小.4.方差的性质.

     ⑴随机变量的方差.(a、b均为常数)

     ξ 0 1 P q p ⑵单点分布: 其分布列为

     ⑶两点分布: 其分布列为:(p + q 1)

     ⑷二项分布:

     ⑸几何分布: 5. 期望与方差的关系.

     ⑴如果和都存在,则

     ⑵设ξ和是互相独立的两个随机变量,则

     ⑶期望与方差的转化:⑷(因为为一常数).

     四、正态分布.

     1.密度曲线与密度函数:对于连续型随机变量ξ,位于x轴上方,ξ落在任一区间内的概率等于它与x轴.直线与直线所围成的曲边梯形的面积

     (如图阴影部分)的曲线叫ξ的密度曲线,以其作为

     图像的函数叫做ξ的密度函数,由于“”

     是必然事件,故密度曲线与x轴所夹部分面积等于1.

     2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:. (为常数,且),称ξ服从参数为的正态分布,用~表示.的表达式可简记为,它的密度曲线简称为正态曲线.

     ⑵正态分布的期望与方差:若~,则ξ的期望与方差分别为:.

     ⑶正态曲线的性质.

     ①曲线在x轴上方,与x轴不相交.

     ②曲线关于直线对称.

     ③当时曲线处于最高点,当x向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.

     ④当<时,曲线上升;当>时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x轴为渐近线,向x轴无限的靠近.

     ⑤当一定时,曲线的形状由确定,越大,曲线越“矮胖”.表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中.

     3. ⑴标准正态分布:如果随机变量ξ的概率函数为,则称ξ服从标准正态分布. 即~有,求出,而P(a<≤b)的计算则是.

     注意:当标准正态分布的的X取0时,有当的X取大于0的数时,有.比如则必然小于0,如图.⑵正态分布与标准正态分布间的关系:若~则ξ的分布函数通常用表示,且有.

     4.⑴“3”原则.

     假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布.②确定一次试验中的取值是否落入范围.③做出判断:如果,接受统计假设. 如果,由于这是小概率事件,就拒绝统计假设.

     ⑵“3”原则的应用若随机变量ξ服从正态分布则 ξ落在内的概率为99.7% 亦即落在之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布)

    • 生活居家
    • 情感人生
    • 社会财经
    • 文化
    • 职场
    • 教育
    • 电脑上网