• 图纸下载
  • 专业文献
  • 行业资料
  • 教育专区
  • 应用文书
  • 生活休闲
  • 杂文文章
  • 范文大全
  • 作文大全
  • 达达文库
  • 文档下载
  • 音乐视听
  • 创业致富
  • 体裁范文
  • 当前位置: 达达文档网 > 作文大全 > 正文

    神奇的新型材料_神奇水宝宝的材料

    时间:2018-12-25 04:50:41 来源:达达文档网 本文已影响 达达文档网手机站

      我们每个人都有使用铅笔的经历,但几乎没有人意识到当我们用铅笔在纸上留下字迹的同时也不知不觉地制造出了很有可能在不久的将来改变人类生活的新材料。这种目前在科学界最热门的材料就是石墨烯。顾名思义,石墨烯与石墨有紧密的联系。我们知道,石墨是一类层状的材料,它是由一层又一层的二维平面碳原子网络有序堆叠而形成的。由于层间的作用力较弱,因此石墨层间很容易互相剥离,形成薄的石墨片,这也正是铅笔能在纸上留下痕迹的原因。这样的剥离存在一个最小的极限,那就是单层的剥离,即形成厚度只有一个碳原子的单层石墨,这就是石墨烯。但长久以来,科学家们从理论上一直认为这种纯粹的二维晶体材料是无法稳定存在的,一些试图制备石墨烯的工作也均以失败而告终。直到2004年,英国曼彻斯特大学的A. Geim教授及其合作人员凭借极大的耐心与一点点运气终于如大海捞针般首次发现了石墨烯。他们采取的手段与铅笔写字有异曲同工之妙,即通过透明胶带对石墨进行反复的粘贴与撕开使得石墨片的厚度逐渐减小,最终通过显微镜在大量的薄片中寻找到了理论厚度只有0.34纳米的石墨烯。这一发现在科学界引起了巨大的轰动,不仅是因为它打破了二维晶体无法真实存在的理论预言,更为重要的是石墨烯的出现带来了众多出乎人们意料的新奇特性,使它成为继富勒烯和碳纳米管后又一个里程碑式的新材料。而Geim教授也凭借这一发现获得了2008年诺贝尔物理学奖的提名。
      石墨烯这一目前世界上最薄的物质首先让凝聚态物理学家们惊喜不已。由于碳原子间的作用力很强,因此即使经过多次的剥离,石墨烯的晶体结构依然相当完整,这就保证了电子能在石墨烯平面上畅通无阻的迁移,其迁移速率为传统半导体硅材料的数十至上百倍。目前科学家们已经研制出了石墨烯晶体管的原型,并且乐观地预计不久就会出现全由石墨烯构成的全碳电路并广泛应用于人们的日常生活中。石墨烯还具有超高的强度,碳原子间的强大作用力使其成为目前已知的力学强度最高的材料,并有可能作为添加剂广泛应用于新型高强度复合材料之中。石墨烯良好的导电性及其对光的高透过性又让它在透明导电薄膜的应用中独具优势,而这类薄膜在液晶显示以及太阳能电池等领域至关重要。可以说,石墨烯的出现不仅给科学家们提供了一个充满魅力与无限可能的研究对象,更让我们对其充满了期待,也许在不久的将来,石墨烯就会为我们搭建起更加便捷与美好的生活。
      石墨烯的电性能:
      在石墨烯领域,研究最深的是石墨烯的电性质。原因应该是石墨烯无与伦比的高电子迁移率。最先分离出石墨烯,来自曼彻斯特的小组测量了他们分离出的单层石墨烯分子的电子迁移率,发现电荷在石墨烯中的迁移速率达到10000cm2/vs,这个测量结果还是在未除去杂质与衬底,保持室温的条件下进行。相比之下,现代晶体管的主要材料硅的电子迁移率不过1400 cm2/vs。当然,这个数据记录并没有保持多久,在2008年,由Geim和他同事领导的小组声称电子在石墨烯中迁移速率可以到达前所 未有的200000 cm2/vs。而不久之后,来自哥伦比亚大学的Kirill Bolotin将这个数值提高到250000 cm2/vs,超过硅100倍以上。石墨烯在电子迁移率上另一个优异性质是它的迁移 率大小几乎不随温度变化而变化。电子迁移率之所以受温度影响,是因为电子在传递过程中受晶体晶格震动的散射作用,导致电子迁移率降低,而晶格震动的强度与温度成正比。然而石墨烯的晶格震动对电子散射很少,几乎不受温度变化影响,马里兰大学的研究人员在50K和500K之间测量了单层石墨烯的电子迁移率,发现无论温度如何变化,电子迁移率大约都是15000 cm2/vs。
       石墨烯的超强导电性与它特殊的量子隧道效应有关。量子隧道效应允许相对论的粒子有一定概率穿越比自身能量高的势垒。而在石墨烯中,量子隧道效应被发挥到极致,科学家们在石墨烯晶体上施加一个电压,然后测定石墨烯的电导率。一般认为,增加了额外的势垒,部分电子不能越过势垒,使得电导率下降。但事实并非如此,所有的粒子都发生了量子隧道效应,通过率达100%。这是石墨烯极高载流速率的来源。
      热性能和机械性能:
      除了特殊的电子效应,石墨烯的非电子效应也同样值得关注。石墨烯的导热能力出众,达到了5000W/(m•k),是金刚石的五倍。而在石墨烯发现以前,金刚石是已知自然界中 热导率最高的。同时石墨烯还是现在世界上已知的最为坚固的材料,在石墨烯样品微粒开始碎裂前,其每100纳米距离上可承受的最大压力达到约2.9微牛。这一结果相当于,施加55牛顿的压力才能使1米长的石墨烯断裂。除了强度高,石墨烯还同时展现出高柔韧性与脆性这两个相互矛盾的性质,这一点史无前例,同样前无古人的发现是石墨烯不容许任何气体通过,可以说是隔绝气体的优良材料。不过关于非电子效应,我们甚至不知道石墨烯的熔点,也不知道它如何熔化的,这源于石墨烯极小的尺寸。
      国内外科研成果
      2009年12月1日在美国召开的材料科学国际会议上,日本富士通研究所宣布,他们用石墨烯制作出了几千个晶体管。研究人员将原料气体吹向事先涂有用做催化剂的铁的衬底,在这种衬底上制成大面积石墨烯薄膜。大面积的石墨烯制备一直是个难题。富士通用上述方法制成了高质量的7.5厘米直径的石墨烯膜。在此基础上,再配置电极和绝缘层,制成了石墨烯晶体管。由于石墨烯面积较大,富士通在上面制成了几千个晶体管。石墨烯晶体管比硅晶体管功耗低和运行速度快,可制作出性能优良的半导体器件。如果改进技术后有望进一步扩大石墨烯面积,这样能够制作出更多的晶体管和石墨烯集成电路,为生产高档电子产品创造了条件。
      2009年11月日本东北大学与会津大学通过合作研究发现,石墨烯可产生太赫兹光的电磁波。研究人员在硅衬底上制作了石墨烯薄膜,将红外线照射到石墨烯薄膜上,只需很短时间就能放射出太赫兹光。如果今后能够继续改进技术,使光源强度进一步增大,将开发出高性能的激光器。研究团队在硅衬底上使用有机气体制作一层碳硅化合物。然后,进行热处理,使其生长出石墨烯的薄膜。该石墨烯薄膜只需极短暂的时间照射红外线,就能从石墨烯上发送出太赫兹光。目前,该团队正致力于开发能将光粒封闭在内部,使光源强度增加的器件,期望能够开发出在接近室温条件下可工作的太赫兹激光器。
      2010年,美国莱斯大学利用该石墨烯量子点,制作单分子传感器。莱斯大学将石墨烯薄片与单层氦键合,形成石墨烷。石墨烷是绝缘体。氦使石墨烯由导体变换成为绝缘体。研究人员移除石墨烯薄片两面的氦原子岛,就形成了被石墨烷绝缘体包围的、微小的导电的石墨烯阱。该导电的石墨烯阱就可作为量子阱。量子点的半导体特性要优于体硅材料器件。这一技术可用来制作化学传感器、太阳能电池、医疗成像装置或是纳米级电路等。

    相关热词搜索: 神奇 新型材料

    • 生活居家
    • 情感人生
    • 社会财经
    • 文化
    • 职场
    • 教育
    • 电脑上网